LINFOOT TALK — MODEL THEORETIC NUMBER THEORY

Question to keep the braying crowd occupied: Suppose n! € Z for every n € N.
What can be said about ¢?

1. NUMBER THEORY

Number theory is often concerned with relationships between numbers. This
often takes the form of asking how many solutions there are to some algebraic
equations up to a certain size. For example:

Conjecture 1 (Manin’s conjecture). Let V' be the intersection of r hypersurfaces
of degree d in P™. Then there is a Zariski open subset U of V and a constant
c1 depending on V and our notion of “size” such that the number of elements in
UNP*Q) up to size T is

e T (log )2 (V) (1 4 0(1))

as T — oo.

2. COUNTING PROBLEMS

Manin’s conjecture is a typical counting problem.

Let X C R™ and H : Q — Ry be a meaningful function to measure size. Let
N(X,T)=#{Z e X(Q") : H(x;) <T}.

The counting problem is to understand this function V.

Ostensibly it depends on X, H, and 7T, but really the choice of H doesn’t
make much difference as long as we're not purposefully oafish. We'll use H(a/
b) = max{|al, |b|} for hef(a,b) = 1.

So, for example, if P is the set of primes then

T
N(P,T) = .
(P, T) logT
Or if we let
X, ={(z,y,2) €R® : 2™ +y" = 2", xyz # 0},
then

N(X,,T)=0
for n > 3 while N(X5,T) isn’t known exactly, determining it is Gauss’s circle
problem.

In 1989 Enrico Bombieri and Jonathan Pila introduced some novel techniques
for the counting problem when X is an irreducible algebraic curve or the graph
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of a transcendental analytic function f : [0,1] — R. Buried in their paper is the
following useful result.

Theorem 2. Let ¢ : (0,1)* — (0,1)" be a C* function with
Hled

o =l

076 = | g gz

for |a| < k, and let X = im(¢p). Then X(Q,T) is contained in the intersection of
X with < x T¢ algebraic hypersurfaces of degree d(e) with d(e) — oo as e — 0.

()| <1

So a common technique is to reparametrise sets by functions like this. Obviously
this result is no good in the algebraic case. But if f : [0,1] — R is transcendental
and analytic, for example, then these intersections are just points and B—P showed
there are ¢(d) = c(g) of them. So if X is the graph of such an f then

N(X,T) <x T°.

The next step is when f : [0,1]?> — R, but now there’s a problem. The function
f can be transcendental but still contain algebraic curves which unduly boost the
value of N(X,T). The solution is to omit them. Let

x- ) O
UCX
U semi-alg.
dim(U)>1

and Xtrams = X\ X212 In higher dimensions it makes sense to estimate N (X2 T).
This is analogous to counting points in a Zariski open subset in Manin’s conjecture.

In 2003 JP published his proof of the two-dimensional case.

Theorem 3. Let f:[0,1]> — R be transcendental and analytic and € > 0, and let
X be the graph of f. Then

N(X'ms Ty <. x TF.

The basic idea of the proof is the same: intersect X with T hypersurfaces. This
gives T¢ curves in R3 which can be projected down to R? to apply the earlier case.
But these curves depend on 7" and without sufficient uniformity the whole thing
goes to pot.

JP managed this, but the general case looked pretty intractable. Which was
where Alex Wilkie and model theory entered.

3. O-MINIMAL STRUCTURES

Model theory is a branch of mathematical logic. As Tony Blair might say, model
theory is too large a subject to describe with a single soundbite, but it is the study
of mathematical structures by studying what is true in those structures.

I like to think of model theory as an extension of the way we learn about groups
at school. We don’t do that by learning everything there is to learn about the
Klein-4 group, and then in the following year take an advanced course where we
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learn there are also other groups. But this is almost how we learn analysis, treating
the reals as the only place it happens.

Model theory strips away these preconceptions and looks at whole classes of
structures as single objects, studying whether the truth of a statement in one
structure can be carried over to the others in its class. As a subject it thrives
on generalities, but this works to its advantage. Once you’ve shown that the truth
of a statement carries from one structure to another, you can prove theorems where
ever it is simplest, and get the same theorem for free in the other structures.

Amongst the structures which contain something like R there is a particularly
well behaved class, the o-minimal structures.

If R is a field with ordering < then an o-minimal structure on R can be thought
of as a family (Sy,),en+ such that:

(1) Sy, is a boolean algebra of subsets of R";

(2) if A€ S, then R x A and A X R are in S, 11;

(3) {(z,y) € R? 1 x <y} € Sy;

(4) {f € R" : 1 =x,} € Sy, for each n;

(5) if # : R**1 — R™ is the projection map on the first n coordinates and
A € Sp41 then w(A) € S,; and

(6) Sy consists of all finite unions of singletons and (possibly unbounded) in-
tervals in R.

If these conditions look like someone pulled them out of their hat then it’s because
they are geometric equivalents of the natural first-order logic operations, where the
definition is very natural and very simple. Elements of \S;, are called definable sets.

The paradigm example of an o-minimal structure is the collection of all semi-
algebraic sets — sets given by polynomial equations and inequalities. The fact that
m(A) is semi-algebraic if A is was proved independently by logician Alfred Tarski
and algebraic geometer Abraham Seidenberg.

Another example is the collection of all bounded subanalytic sets. These start
with bounded semi-analytic sets, those defined locally by real power series, then
allow projections down. Now condition (5) is free, but showing the complement
of a subanalytic set is subanalytic is not easy. This was accomplished by Andrei
Gabrielov. The sets that Pila got his T° bound for are definable in this structure.

A final example is the structure Reyp. This starts with “semi-exponential” sets
given by exponential polynomial equations and inequalities, and then allowing pro-
jections. Alex Wilkie proved this collection is closed under taking complements and
Khovanskii showed semi-exponential sets have finitely many connected components,
thus giving us (6).

In 2006 Pila and Wilkie proved the following:

Theorem 4 (Pila-Wilkie). Let X C R™ be a definable set in some o-minimal
structure and € > 0. Then

N(Xtmns’ T) <<E,X TE.
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Using this, various new proofs of problems in the Manin—-Mumford circle have
been given, including the first unconditional proof of a bunch of cases of the André-
Oort conjecture by JP.

The Pila-Wilkie theorem applies to Diophantine geometry. It can’t really be
improved in general because the Bombieri—Pila result is essentially best possible.
But Wilkie conjectured an improvement of a more transcendental number theoretic
nature.

Conjecture 5 (Wilkie’s conjecture). Let X C R™ be a definable set in Rexp,. There
are constants ¢1(X) and c2(X) such that for all T > e,

N(Xt'rans’ T) g Cl(X)(IOg T)Cz(X).

Known cases:

e dim(X) =1 (B., Jones—Thomas).

e X C R3 provided X can be nicely reparametrised (Jones-Thomas). In
particular...

o {(7,y,2) €R? : (logz)*(logy)®(log 2)¢ = 1} for any a,b,c € Q (B.).

4. A LIKELY APPROACH

The Pila—Wilkie proof relies on showing definable sets are the image of finitely
many C* maps with bounded derivatives up to order k. For Wilkie’s conjecture we
need C'*° maps ¢ with

0°(7)] < al(Alal )"
for some A, C' and for all & € N¢.

That being said, that’s not how the dim(X) = 1 case is proved.

5. SKETCH PROOF WHEN dim(X) =1

Let X C R", dim(X) = 1. Can project down and use the maps (z,y) —
(£2t! +4*1) and a shed load of model theory to get X to be the graph of a
smooth function ¢ : (0,1) — (0, 1).

There is a result that says X (Q) lies on the intersection of X with <« (logT)¢
hypersurfaces of degree < (log T')¢ if we can ensure |¢/| < 1 and ¢U) is either = 0 or
# 0 for 1 < j <~ (logT)°. So if we can split (0, 1) into about (logT")¢ subintervals
where these criteria are met we’re halfway there.

One last bit of model theory tells us that ¢ is implicitly exp-definable. So
there are exponential polynomials fi,..., fm : R™T! — R and smooth functions

¢ = b1, P2, ..., dn such that:

o fi(t,91(t),...,¢m(t)) =0for 1 <i<mandte€(0,1);

of:
o det <8y.7)1<i,j<m £0,
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Differentiating each f; implicitly gives us m equations in the m unknowns ¢/,
and we can solve this system because the matrix of coefficients in nonsingular. So
we can find ¢’ (and inductively ¢(4)) in terms of 0fi/0y;.

Thanks to Khovanskii, Gabrielov, and Vorobjov, we can bound the zeros of such
expressions and so split (0,1) into (log T")¢ subintervals where aforementioned result
holds.

A similar process lets us estimate the number of intersections of X with algebraic
hypersurfaces of a given degree, and multiplying everything together we end up with

N(Xtrans, T) <<X (log T)11+6m.
6. TRANSCENDENTAL APPLICATION

Suppose we could get N(X,T) <« logT for number fields F' C R, and then apply
this to the set
Xo ={(z,y) €eR? : y =2}

for irrational a.

Now suppose (21,¥1), (22,y2) € Xo with 2;,y; € Q and 27, xo multiplicatively

independent. Let F' = Q(x;,y;) then for a1,as € Z,
(271252, 97" y5?) € Xa N F?
and if (a1,as) # (b1,b2) then the corresponding points in X, will be different.
taking all pairs aq, ag with |a1] + |az| < logT gives
N(Xo,T) > (logT)?,

a contradiction. This implies...
Conjecture 6 (Four exponentials conjecture). Let x1,x2 € R be Q-linearly inde-

pendent and y1,y2 € R be Q-linearly independent. Then at least one of
el’lyl ex1y2 612741 612742

is transcendental.

Assuming this to be true, now let ¢ € R be such that 2¢,3" € Z. Apply the
four-exponentials conjecture to the pairs 1,¢ and log2,log3. If ¢ is irrational this
would imply that one of

2,3,2¢ 3¢
was transcendental, but they’re all integers. Sot € Q. But if t € Q and 2t € Z
then ¢t € N.



